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Abstract

Purpose of review: This review demonstrates the growing body of evidence connecting DNA 

methylation to prior exposure. It highlights the potential to use DNA methylation patterns as a 

feasible, stable, and accurate biomarker of past exposure, opening new opportunities for 

environmental and gene-environment interaction studies among existing banked samples.

Recent findings: We present the evidence for association between past exposure, including 

prenatal exposures, and DNA methylation measured at a later time in the life course. We 

demonstrate the potential utility of DNA methylation-based biomarkers of past exposure using 

results from multiple studies of smoking as an example. Multiple studies show the ability to 

accurately predict prenatal smoking exposure based on DNA methylation measured at birth, in 

childhood, and even adulthood. Separate sets of DNA methylation loci have been used to predict 

past personal smoking exposure (postnatal) as well. Further, it appears that these two types of 

exposures, prenatal and previous personal exposure, can be isolated from each other. There is also 

a suggestion that quantitative methylation scores may be useful for estimating dose. We highlight 

the remaining needs for rigor in methylation biomarker development including analytic challenges 

as well as the need for development across multiple developmental windows, multiple tissue types, 

and multiple ancestries.

Summary: If fully developed, DNA methylation-based biomarkers can dramatically shift our 

ability to carry out environmental and genetic-environmental epidemiology using existing 

biobanks, opening up unprecedented opportunities for environmental health.
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Introduction

Heritability analyses for most complex disorders show that at least some portion of disease 

liability is due to environmental factors[1], often a large component of risk. The specific 

health consequences of environmental exposures have been well established for many 

toxicants and outcomes[2, 3]. Yet, many environmental risk factors have not yet been 

discovered, despite evidence that they play a role in disease. Environmental epidemiology’s 

goal of identification and characterization of non-heritable risk factors is critical, as these 

factors provide actionable insights about modifiable causes of disease that can lead to better 

prediction, prevention, treatment, and policy.

A major limitation to further discovery in environmental epidemiology has been the need for 

timing-specific exposure information and prospective outcome data. This is a great 

challenge, particularly for exposures influencing risk on outcomes years to decades later, 

and for exposures that are difficult to measure or occur prior to feasible study enrollment, 

such as prenatal or preconception exposures. Some prospective cohort studies do begin prior 

to pregnancy, or early in pregnancy, and follow new babies through life (e.g.,[4–9]). 

However, these study designs take years to accumulate outcomes, often with attrition or low 

enrollment numbers given the timing of enrollment and the length of commitment. 

Retrospective measurement of exposure is notoriously difficult, given the potential for recall 

bias in self-report, the lack of information in administrative data such as electronic health 

records, particularly for toxicants, and the short half-lives of many toxicants – such that 

biomarker measurement weeks or years later is irrelevant to amounts of exposure at the time 

of vulnerability.

Thus, there is a critical need in environmental epidemiology for measurement tools that can 

accurately capture past exposure, particularly prenatal and early life exposures. One 

emerging area of promise is the ability to measure toxicant content of shed baby teeth, 

available at middle childhood, but able to inform exposures that occurred in utero[10, 11]. 

While this is a promising avenue, it does require availability of baby teeth and is to date, 

relatively expensive with few labs able to perform detailed measurement. Among the other 

emerging options is the potential for blood, or other readily available tissue samples, to 

provide past exposure proxy information. This could be transformational for environmental 

epidemiology and genetic epidemiology. If one can use biosamples already in biobanks, 

such as UK biobank[12] or the vast genetic consortia banks (e.g.,[13]) to estimate prior 

exposure with accuracy, there would be ample power to ask environmental exposure 

questions not previously possible and to truly integrate genetic and environmental 

information in these large sample sets.

One promising possibility for a blood (or convenience tissue)-based biomarker of past 

exposure that could enable environmental and gene-environmental work in existing 

Ladd-Acosta and Fallin Page 2

Curr Epidemiol Rep. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



biosamples is the potential for DNA methylation patterns to mark prior exposure. As we 

show in this review, there is now a substantial body of evidence that DNA methylation 

measured in blood, and other tissues, is associated with prior exposure, and that this 

association may be strong enough to enable an accurate predictor of exposure that is timing 

and toxicant specific. More work must be done to establish such biomarkers for specific 

exposure, but here we show evidence from discovery epigenome-wide association studies 

(EWAS) for several exposures and timing, paving the way for such biomarker development. 

Such discoveries must be further evaluated in prediction models to establish their biomarker 

utility. As an example, we elaborate on the work done with the association between prenatal 

smoking exposure and DNA methylation patterns, which has moved from EWAS discovery 

to biomarker development. The results show promising accuracy, reproducibility, specificity 

to exposure, and persistence over many years. We also discuss DNA methylation patterns as 

a cumulative exposure biomarker, or biomarker of aging, through what has been termed 

“DNA methylation clocks”. Through this review, we hope to present these findings as 

examples of the opportunities that exist for environmental and genetic-environmental 

epidemiology through DNA methylation-based biomarkers and call for more work to be 

done in the field to realize this potential.

Suitability of DNA methylation as a biomarker of past exposure

DNA methylation is a type of epigenetic mark with several inherent properties that make it 

well suited for exposure biomarker purposes. DNA methylation involves the covalent 

addition of a methyl or hydroxylmethyl group to cytosine nucleotides in human DNA, and 

thus, it is relatively stable and not easily degraded with long-term storage. It also does not 

require any burdensome up front sample collection or processing methods. These properties 

are particularly important when considering new methods to extract past exposure 

information from existing biobanks and repositories. While chemically stable, DNA 

methylation is a dynamic process that can be modified by environmental context and over 

time; a critical feature of any exposure biomarker. It provides a mechanism for cells and 

organisms to respond to their environment without changing the DNA sequence. Finally, 

because DNA methylation is quantitative in nature, it may capture “biological dose” and/or 

effects of exposure mixtures.

There are several advantages to using DNA methylation as a biomarker of exposure relative 

to prospectively or retrospectively collected exposure data, metabolites, gene expression, or 

objective wearable devices. More traditional exposure ascertainment methods can pose 

several problems. Prospective collection of exposure data is ideal but is costly and can be 

inefficient for diseases with lower prevalence rates or those with long lag times between 

exposure and development of disease. Retrospective collection of exposure data is subject to 

recall bias or misclassification and is impossible to collect for certain exposures (e.g. metals 

toxicants). The emergence of objective wearable devices can overcome many of these issues 

but have only recently come online, and thus, don’t enable utilization of existing large-scale 

biobanks. Use of molecular biomarkers of exposure has been mainstream for decades. For 

some exposures, metabolites have been the gold standard measurement tool to collect 

accurate highly reliable information about exposure. For example, cotinine, a major 

metabolite of nicotine, is widely recognized as the optimal collection metric to obtain 
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smoking status[14, 15]. Untargeted metabolomic assays also have the potential to capture 

exposure mixtures and quantities. However, one of the major limitations to using metabolites 

as biomarkers of past exposure is their short half-life. The half-life of most metabolites, 

including cotinine, is on the order of hours to days[16–18]. Metabolites collected from 

untargeted assays can also be sensitive to dietary intake differences and sample collection 

protocols that may vary within and across large biobanks. Laboratory and analytic methods 

to best address these issues are still under development. Exposure-related transcriptome 

changes have also been observed. Isolating high quality RNA suitable for gene expression 

profiling can be challenging in an epidemiologic and biobank resource setting because it is 

less stable than DNA and more subject to degradation with longer-term storage or 

suboptimal collection protocols. New molecular biomarkers that are long-lived, specific, 

stable, and that can be reliably measured in existing banked samples are needed; as 

evidenced in detail below, DNA methylation meets these criteria.

DNA methylation is associated with past exposure, across multiple 

domains

With the emergence of affordable genome-scale epigenetic technologies it is now feasible to 

measure DNA methylation in a large number of samples and perform epigenome-wide 

association studies (EWAS) to discover methylation differences, at specific CpG sites in the 

genome, associated with particular exposures or outcomes[19]. This technological advance, 

coupled with a strong interest in identifying molecular changes related to environmental 

exposures has led to a rapid increase in environmental epigenomics studies. A wide-range of 

exposures have now been linked to epigenetic changes in studies where both types of data 

were measured at the same time; these have been extensively reviewed elsewhere[20–22]. In 

this review, we focus on EWAS showing DNA methylation patterns, measured across the 

lifespan, reflect past exposures. As summarized in Table 1, methylation changes have been 

linked to past exposure, across a wide-range of environmental domains.

Prenatal exposure to smoking and alcohol.

Several EWAS have identified site-specific changes in DNA methylation levels at birth 

related to prenatal exposure to maternal smoking[23–27] and alcohol use[28] (Table 1). 

Several genomic regions have shown suggestive differences in cord blood DNA methylation 

levels related to maternal drinking habits during early pregnancy[28]. However, studies of 

prenatal alcohol exposure and DNA methylation are limited by sample size and window of 

pregnancy timing. Additional genome-wide significant findings may emerge with increased 

sample sizes and/or more resolved alcohol exposure metrics in the future. For prenatal 

smoking exposure, site-specific changes in DNA methylation have been detected in 

peripheral blood obtained from infants[29], older children[23, 24, 26, 30, 31] and 

adolescents[24]. Associations between later life blood DNA methylation and prenatal 

smoking exposure persist even after adjusting for postnatal and personal smoking 

exposures[24, 26]. Smoking and drinking are thought to have similar social determinants 

and correlated patterns of use; however, the associated DNA methylation findings published 

to date have not been consistent across these exposures, indicating DNA methylation 
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signatures may be exposure-specific and not merely capturing a social determinant 

construct[23, 28, 31].

Nutrition and supplementation.

As shown in Table 1, a number of studies have observed DNA methylation changes in 

samples collected - from birth through adulthood - related to differences in peri- and prenatal 

exposure to nutrient intake and nutritional supplements [32–39]. Differences in maternal 

nutrient intake during peri-conception and pregnancy through diet and food availability have 

been linked to DNA methylation changes, at specific genes, in blood and buccal samples 

obtained from their offspring at birth, infancy, and childhood[34–38]. A number of studies 

have leveraged data from cohorts dating back to the 1960’s when the first randomized 

control trials were carried out to assess the impact of folic acid and/or docosahexaenoic acid 

(DHA) supplementation on birth and child outcomes. Saliva DNA methylation profiles 

collected in 47-year old adult offspring of the Aberdeen Folic Acid Supplementation Trial 

(AFAST) participants showed differences related to whether their mothers received folic 

acid supplementation during pregnancy or were in the placebo group[32]. A randomized 

controlled trial for Docosahexaenoic acid (DHA), an omega-3 fatty acid, observed 

differentially methylated genomic regions among infants whose mothers received DHA 

relative to those that did not receive the supplement. Furthermore, the methylation 

differences were also shown to be present in peripheral blood samples collected at 5 years of 

age[39].

Prenatal toxicant exposures.

In the past year, DNA methylation changes have been linked to air pollutant exposure in the 

prenatal time period (Table 1). More specifically, a multi-study EWAS meta-analysis 

identified CpG loci showing significant methylation changes in cord blood, at birth, related 

to prenatal nitrogen dioxide (NO2) exposure levels. Interestingly, prenatal NO2 associated 

methylation changes were also observed in peripheral blood obtained from older children. 

The NO2 exposure levels at the time of blood sample collection in the older children were 

substantially lower than those the children experienced during pregnancy, arguing that their 

presence in childhood samples was not likely due to continued postnatal exposure or current 

NO2 exposure status[40]. More evidence in this area is likely to transpire as additional 

studies with unified prenatal air pollutant and DNA methylation data emerge. In addition to 

site-specific changes in DNA methylation, a significant global decrease in the total genomic 

amount of 5-hydroxymethyl, a specific type of DNA methylation, was observed in birth and 

early childhood blood samples among children with elevated prenatal exposure to 

mercury[41].

Prenatal exposure to adversity.

Several social adversity exposures have been associated with long-term changes in DNA 

methylation (Table 1), although, they have mainly focused on candidate genes. For example, 

candidate-gene based work, from the historic Dutch Hunger Winter study, revealed DNA 

methylation levels at the IGF2 gene locus differ significantly between individuals with 

prenatal exposure to the 1944–45 famine relative to their unexposed same-sex siblings[42]. 

These changes were detected in blood samples provided 60 years after their prenatal 
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exposure to famine. Exposure to severe maltreatment during early childhood has also been 

linked to methylation changes in saliva. Significant decreases in DNA methylation at the 

NR3C1 gene locus were observed among preschool age children exposed to stress/

maltreatment in the six months prior to biospecimen collection compared to unexposed 

children with similar economic status[43].

Maternal conditions in pregnancy.

There is also evidence that exposure to adverse maternal health conditions during pregnancy 

are related to methylation changes at birth through adolescence (Table 1). A meta-analysis of 

19 cohorts reported 86 site-specific changes in DNA methylation, in cord blood, related to 

maternal body mass index (BMI) at the start of pregnancy[44]. Of those, 72 sites showed a 

similar association, direction, and magnitude of effect in peripheral blood samples obtained 

in adolescence[44]. DNA methylation levels among infants born to women with an active 

eating disorder during pregnancy differed from those whose mothers had an active eating 

disorder (ED) prior to conception and non-ED controls[45]

Adult exposures and later measurement.

Several studies have reported long-lasting DNA methylation patterns in later adulthood 

biospecimens related to past earlier adulthood exposures. Similar to prenatal exposures, 

most findings to date are for behavioral and lifestyle types of exposures including smoking 

and alcohol use (Table 1). This is likely due to lack of unified exposure and methylation data 

in the same samples for other, more difficult, to obtain exposures. In world-wide population 

samples, meta-EWAS have identified thousands of loci where peripheral blood methylation 

levels differ by current, former, and never smoker status[46–48]. Joehanes et al, found that 

methylation values among former smokers that quit smoking 30 years prior to collection of 

methylation measurements in blood samples, still had not reached levels comparable to 

individuals that never smoked[46]; thus, DNA methylation changes associated with past 

exposures can be long-lived. Further, smoking-related methylation values appear to capture 

additional valuable information about past exposures: time-since quitting and number of 

pack-years smoked[46–48]. This has important implications for the potential to use DNA 

methylation signatures to serve not only as a simple dichotomous exposure biomarker but 

also as a biomarker that can be used to determine specific windows and doses of exposure. 

Similar differences in methylation related to smoking status, time since quitting, and pack-

years have also been documented in buccal samples[48], another highly accessible and 

available tissue source. However, a comparison of DNA methylation patterns among 

hundreds of former drinkers compared to never drinkers, ~4 years after alcohol cessation, 

showed only marginal differences between the two exposure groups[49]. Epigenetic changes 

related to nutrition in adults have also been observed (Table 1). Males exposed to a short-

term high fat overfeeding diet showed epigenetic changes that persisted for 6–8 weeks after 

the men resumed their normal diets[50].

Longitudinal DNAm data.

To date, three studies have reported repeated measures of DNA methylation and associations 

with exposure information; two were focused on DNA methylation signatures of prenatal 

smoking exposure and the third examined the effects of maltreatment. Longitudinal analysis 
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of methylation profiles at prenatal smoking-associated CpG sites showed similar differences 

in DNAm related to prenatal smoking status at 18 months [51], 7, and 17 years of age[24] 

even after accounting for any postnatal smoking exposures in the older children[24]. 

However, in adolescence, there were 3 CpG sites that showed reversion back to methylation 

levels observed among adolescence with no prenatal exposed to maternal smoking[52]. This 

suggests that signatures of prenatal exposure developed solely in cord blood samples may 

fail to account for important differences in methylation stability in the postnatal period. 

Thus, the development of a robust epigenetic biomarker of past exposure will need to take 

this into account and evaluate methylation patterns at multiple post-exposure time points. 

The third study examined baseline and longitudinal changes in saliva methylation levels over 

a period of 6 months, among preschool age children, to assess the effects of maltreatment (at 

baseline) on methylation at NR3C1[43]. Children with no history of maltreatment showed 

little variation in methylation across the 2 time points. However, children with a history of 

maltreatment had significantly higher levels of methylation at baseline and significantly 

decreased methylation 6 months later. This suggests looking for differences in methylation 

variation among exposed and unexposed individuals, as opposed to mean methylation shifts, 

may be a fruitful and important avenue for future studies.

Cumulative exposures, aging, and epigenetic “clocks”

In addition to serving as a biomarker for discrete intervals of exposure, DNA methylation 

signatures have also been reported to capture continuous cumulative levels of exposures 

including toxicant and behavioral. For example, measures of global DNA methylation levels 

in LINE-1 elements were significantly decreased among men with increased cumulative 

exposure to lead, as assayed via patella bone K-Xray which is a well-established traditional 

biomarker of long-term lead exposure[53]. In addition, several studies of adult smokers have 

consistently demonstrated DNA methylation patterns at specific sites accurately reflect the 

cumulative amount and duration of current and prior smoking[46–48].

A number of DNA methylation “clocks” have been developed to reflect gestational[54–56], 

pediatric[57], and adult[58–63] chronologic ages, a type of demographic exposure, that can 

also be thought of as a cumulative exposure. These methylation clocks have been widely 

used to predict a number of adverse health outcomes demonstrating the utility of DNA 

methylation exposure biomarkers in epidemiology studies, more broadly[64–67]. For 

example, the adult-derived epigenetic clock has been shown to better predict all-cause 

mortality than examination of traditional risk factors or chronological age[68].

Biomarkers require predictive modeling beyond EWAS discovery analyses

EWAS findings continue to emerge and provide valuable insights into the biologic targets of 

environmental exposures. However, the main output from EWAS isn’t directly informative 

or useful as a predictive biomarker. Results are typically per-CpG, rather than a collective 

“signature”. Further, discovery analyses typically rely on general associations between 

exposed versus unexposed samples. A predictive modeling approach is needed to develop a 

useful biomarker. Accuracy parameters such as sensitivity, specificity, and area under the 

ROC curve (AUC) are more relevant for biomarker development[69, 70]. Further, a 
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collection of CpGs associated with the particular exposure will necessarily have better 

predictive properties than a single CpG. Selection of this collective list, modeling of the 

prediction algorithm, and evaluation of prediction performance is necessary. This approach 

has been taken in the development of epigenetic clocks described above. Choices for CpG 

selection include simply taking all CpGs meeting a particular statistical threshold in EWAS, 

or building machine-learning models using techniques such as support vector machines or 

elastic net[71]. Prediction algorithms can then include all CpGs equally, or weighted by their 

association with the exposure, or other characteristics. The output may be a probabilistic 

exposure membership (dichotomous, with associated probability), or a methylation-based 

exposure “score”[52, 72].

Prenatal smoking as an example

For the most well-studied and replicated exposure – prenatal smoking - work in this area has 

already begun and can be used as an exemplary model for the field to be extended to other 

types of exposures. The first site-specific differences in DNA methylation related to prenatal 

exposure to smoking were reported in 2012 by Joubert et al[27], where EWAS revealed 26 

CpG sites with exposure-associated DNA methylation differences achieving genome-wide 

significance. Not long after, studies emerged replicating the findings in additional birth 

samples and adding a hand full of new loci[24–26]. Many also showed similar DNA 

methylation patterns associated with prenatal smoking exposure, but when measured in 

blood samples from older children, ranging in age from 5–17 years[24, 26, 30, 31], even 

after accounting for parental and personal postnatal smoking exposures[24, 26].

Ladd-Acosta et al[31] were the first to use predictive modeling to evaluate how well DNA 

methylation levels, measured in blood samples from 5-year old children, at the originally 

reported 26 CpG sites associated with prenatal smoking exposure, could predict prenatal 

exposure to smoking from childhood, rather than cord blood. Their support vector machine 

classifier, with 10-fold cross validation, predicted the children’s exposure to sustained active 

maternal smoking in pregnancy with 87% accuracy when compared to maternal report of 

smoking during pregnancy (Table 2). Receiver operating characteristic (ROC) curves also 

showed the specificity of the model was high; prediction of prenatal smoking exposure using 

permuted random sets of 26 loci never achieved greater than 60% accuracy and the prenatal 

smoking classifier was not able to predict exposure to maternal alcohol or medication use 

with higher than 56% accuracy[31]. The following year, Reese et al[72] developed a single 

numeric methylation score, based on DNA methylation measured in blood, and showed 

good correspondence to prenatal cotinine levels consistent with sustained exposure to active 

maternal smoking. In an independent test set of cord blood samples, the methylation score 

was able to predict prenatal exposure to sustained smoking with 91% overall accuracy[72] 

(Table 2). A recent cord blood methylation meta-analysis, spanning 13 world-wide studies 

and 6,685 samples, showed consistency with previous findings and expanded the set of loci 

significantly associated with prenatal smoking from dozens to 2,965 CpG sites[23]. 

Nominally significant differences in methylation were also observed in older children 

(n=3,187) for every CpG site identified at birth[23]. More recently, Richmond et al[52], 

developed a methylation-based smoking score using meta-EWAS findings and evaluated its 

ability to predict prenatal smoking exposure in an independent set of blood samples 
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collected 30 years after pregnancy (Figure 1; Table 2). The first score they derived was based 

on 568 loci that reached genome-wide significance in cord blood at birth (associated with 

prenatal smoking exposure) and a second score was based on 19 sites detected in blood from 

older children at genome-wide significance (associated with prenatal smoking)[23]. Given 

the age of the participants at time of blood collection and methylation measurements, it is 

possible that the offspring themselves smoked; therefore, the authors also computed a 

methylation score for personal (postnatal) smoking exposure using 2,623 sites identified as 

significantly associated with current smoking status in a large adult smoking meta-

analysis[46]. As shown in Figure 1 and Table 2, the classification accuracy of the prenatal 

exposure methylation score, based on 30-year old adult blood specimens, was highest when 

using the 19 locus methylation score method that had been derived using middle childhood 

methylation data (AUC=0.72). Somewhat unexpectedly, the cord blood derived score had a 

lower overall prediction accuracy (AUC = 0.69). This highlights the importance of including 

childhood samples in discovery EWAS and for including loci identified in childhood 

samples in prenatal biomarker development, if later life biosamples are the intended use. 

Importantly, they also showed current smoking exposure scores can’t predict prenatal 

smoking exposure with high accuracy (AUC = 0.57). Thus, these classifiers appear specific 

to prenatal exposure. This is consistent with previous observations that there is some, but not 

complete, overlap of loci associated with prenatal smoking exposure and personal adolescent 

or adult smoking exposures[26, 46].

Finally, separate DNA methylation patterns have been shown to predict prior adult personal 

smoking exposure. A 4-CpG model using predictive generalized linear models has been 

shown to predict prior personal smoking status among adults[73]. The 4-locus model was 

highly accurate in an independent test sample with an AUC = 0.83[73] (Table 2). 

Furthermore, they showed DNA methylation is a better long-term biomarker of exposure 

than cotinine. The prediction model using cotinine levels was able to accurately predict 

former adulthood smoking in only 47% of the samples compared to 83% when DNAm was 

used as a biomarker of personal smoking history[73] (Table 2). While associations between 

DNAm levels and specific dose, duration, and time since quitting have been observed in 

adults[46–48], these more detailed exposure classes have not been pursued in published 

predictive analyses to date.

Need for additional evidence

The smoking exposure examples demonstrate the potential for DNA methylation-based 

biomarkers of prior exposure. Multiple studies show the ability to accurately predict prenatal 

exposure based on DNA methylation measured at birth, in childhood, and even adulthood. 

Separate sets of DNA methylation loci can be used to accurately predict past personal adult 

exposure as well. Further, it appears that these two types of exposures, prenatal and previous 

personal exposure, can be isolated from each other. There is also a suggestion that 

quantitative methylation scores may be useful for estimating dose. If fully developed, such 

biomarkers, across multiple exposures and DNA measurement windows, can dramatically 

shift our ability to carry out environmental and genetic-environmental epidemiology using 

existing biobanks. However, much more work must be done. First, studies must move from 

site-by-site discovery EWAS approaches to classification approaches. The field must 
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establish best practices for selecting CpGs that create accurate and generalizable classifiers. 

Multiple feature selection algorithms are available, and multiple metrics of predictive 

accuracy exist. The influence of QC pipelines on accuracy must also be considered, as has 

been done in other omics classifier work[74]. Perhaps most importantly, the accuracy and 

utility of DNA methylation biomarkers of exposure must be explored across ancestries and 

tissue matrices. Because DNA methylation at many CpG sites is, in part, genetically 

controlled[75, 76], it is likely that DNA methylation signatures of exposure may vary by 

ancestry. Additionally, the effects of environmental exposures on the epigenome can be 

influenced by underlying genotypes[77–81]. Genetic heterogeneity is likely to be 

particularly important among genes that establish, maintain, and regulate DNA methylation 

as well as for genes involved in exposure metabolism and detoxification. Thus, studies that 

assess potential genetic modification of epigenetic signatures of exposure are also needed. 

Tissue type will also play a critical role. While it is not necessary that a biomarker be on the 

causal path of an exposure to the ultimate health outcome of interest, it may still be true that 

different DNA methylation sites show predictive accuracy in different cell types. This is 

because the base level and variability of DNA methylation varies by cell type, and thus the 

opportunity for additional variation that captures exposure is likely to be heterogeneous 

across tissue types. This has already been established for epigenetic clocks, where patterns 

from single tissue types do not fully overlap in their age prediction accuracy[60]. These 

caveats to not diminish enthusiasm for this potentially influential area for epidemiology, but 

do call attention to the rigorous work ahead.

Conclusions:

The ability to obtain measures of environmental exposures in existing samples and biobanks 

will enable new large-scale analyses to investigate modifiable environmental risk factors for 

disease as well as their interaction with genes. Both inherent properties and empiric evidence 

support the potential for DNA methylation to serve as a stable, long-term biomarker of past 

exposures across a range of environmental domains. Predictive models and methylation 

based exposure scores are emerging and have shown high accuracy in their ability to 

predicting former prenatal and adulthood personal smoking exposures. To fully realize the 

potential of DNA methylation as exposure biomarkers, continued large-scale EWAS and 

development of predictive models, across time points, tissue types, and ancestry are needed.
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Figure 1. DNA methylation biomarkers, regardless of timing of sample collection, can be used to 
predict prenatal smoking.
As reported in Richmond et al[52], adult biosamples can accurately predict prenatal 

smoking, even after accounting for post-natal (own) smoking. Predefined sets of CpG DNA 

methylation loci can be used for prediction. Derived reference sets from infant cord blood 

and from middle childhood blood are available (top). The CpG set derived from childhood 

samples achieves slightly better prediction parameters (bottom).
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